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ABSTRACT  

One of the essentials of intelligent prosthetics design is to recognize the wearer's movement intention, to 

provide the wearer with the corresponding control strategy and movement assistance. The 11 independent 

gait patterns and 5 transformed gait patterns are recognized by the self-designed human lower limb motion 

data measurement system. The human gait pattern is classified by the linear discriminant analysis (LDA) 

classifier, and the recognition accuracy is evaluated by K-fold Cross Validation(K-CV). The average recognition 

accuracy of independent gait patterns is 90.91%. In the independent gait pattern, the lowest recognition 

accuracy of DS1 gait phase is 90.53%, and the highest recognition accuracy of SS2 gait phase is 91.36%. The 

overall average recognition accuracy of the transformed gait pattern is 92.67%, the lowest recognition accuracy 

of DS1 gait phase is 91.93%, and the highest recognition accuracy of SS1 gait phase is 93.31%. The main 

reason affecting the recognition accuracy is that some gait patterns have similar motion characteristics. The 

method proposed in this study can accurately predict the wearer's locomotion mode and serves as a reference 

for gait pattern recognition, prediction, and control strategies in intelligent prosthetic devices. 

 

摘要 

智能假肢设计的关键之一是识别佩戴者的运动意图，为佩戴者提供相应的控制策略和运动辅助。通过自主设计

的人体下肢运动数据测量系统对11种独立步态模式和 5种变换步态模式进行识别。采用线性判别分析（LDA）

分类器对人体步态模式进行分类，并采用 K-fold 交叉验证（K-CV）对识别精度进行评价。独立步态模式的平

均识别准确率为 90.91%。在独立步态模式下，DS1步态相位的识别准确率最低为 90.53%，SS2步态相位的识别

准确率最高为 91.36%。变换步态模式的整体平均识别准确率为 92.67%，DS1 步态相位的最低识别准确率为

91.93%，SS1步态相位的最高识别准确率为 93.31%。影响识别精度的主要原因是某些步态模式具有相似的运动

特征。本文提出的方法可以准确预测佩戴者的运动模式，为智能假肢的步态模式识别、预测和控制策略提供参考。 

 

INTRODUCTION 

Lower limb amputation affects daily life. Although passive prostheses can meet the basic daily use of 

amputees, the wearer presents asymmetrical gait patterns in performing daily activities (Zhu et al., 2014; 

Windrich et al., 2016; Dey et al., 2020). To compare with the able-bodied individuals, the amputees need to 

consume 20-30% extra metabolic energy in movement (Au et al., 2009). Intelligent prostheses, as a medical 

device that can simulate the human-machine relationship between amputee and prosthesis to the maximum 

extent, are attracting more and more attention (Tucker et al., 2015; Silva Júnior et al., 2015; Yang et al., 2016; 

Hernandez and Yu, 2022; Yue et al., 2023). 

The study of locomotion mode is one of the important contents of intelligent prostheses. By collecting 

and analyzing relevant signals, the basic information of human movement can be extracted, and then different 

control strategies can be selected by judging the movement to ensure the smooth and labor-saving of the 

wearer. At present, the signals used for the study of locomotion mode are mainly divided into mechanical 

signals (such as gyroscopes, accelerometers, goniometers and magnetometers) (Bisio et al., 2016; Quintero 

et al., 2016) and bioelectric signals (electromyography (EMG) is a widely used bioelectric signal) (Bakina et 

al., 2018; Chen et al., 2015; Wang et al., 2016). 
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Nazarpour et al. recognized the locomotion mode based on EMG signals, utilized higher order statistics 

of EMG signal to classify four primitive motions, i.e., elbow flexion, elbow extension, forearm supination, and 

forearm pronation. The results indicated that the proposed approach provided higher identification rates 

(Nazarpour et al., 2007). Liu et al. collected the EMG signals of two able-bodied subjects and two unilateral 

transfemoral amputees during normal walking, compared and evaluated three kinds of adaptive classifiers off-

line (Liu et al., 2017). The entropy-based adaptation was implemented for real-time human-in-the-loop 

prosthesis control. The online evaluation showed that the developed novel adaptive strategy may further 

enhance the reliability of neurally controlled prosthetic legs. Wang et al. proposed a wearable plantar pressure 

measurement system, which identified five locomotion modes through four force sensors mounted on insoles, 

and the average recognition errors of four phases of the five patterns were 19.6%, 12.6%, 5.2%, and 6.3% 

respectively (Wang et al., 2012). Young et al. used mechanical sensors to identify five motion modes of walking 

on level ground, ramp and stairs, with an overall accuracy of 93.9% (Young et al., 2013). Meng et al. collected 

EMG signals and linear acceleration of 10 able-bodied subjects in seven locomotion activities, such as sitting, 

standing and walking horizontally. By comparing four classifiers, the results show that the SVM model with a 

sliding window size of 80ms has the best recognition performance. EMG signal fusion not only improves the 

recognition accuracy of steady-state motion from 90% (only using acceleration data) to 98% (using data 

fusion), but also can predict the next steady-state motion (Meng et al., 2021). 

EMG signal will change with the change of electrode conductivity, electrophysiology, space, user and 

other factors, and the myoelectric decoding algorithms is very demanding (Sensinger et al., 2009; Jain et al., 

2012; Young and Ferris, 2016; Fan et al., 2024). Compared with bioelectric signals, mechanical signals are 

more mature, smaller in size and highly integrated (Ambrozic et al., 2014; Gorsic et al., 2014; Yuan et al., 

2017). The acquisition of mechanical signals is mainly through accelerometers, gyroscopes, pressure sensors 

and other devices (Adapala et al., 2013; Parri et al., 2017; Hussain et al., 2019). For example, Hartmann et al. 

proposed an online human activity recognition (HAR) system, in which wearable sensors (such as inertial 

measurement units) acquire data and identify activities through hidden Markov models (Hartmann et al., 2022). 

On the other hand, data provided by multiple sensors is superior to data provided by a single sensor in theory 

(Khaleghi et al., 2013). Multi-sensing technology can reduce the power consumption while achieving more 

abundant functions, because of the development of microcomputer system and electronic technology. 

Hartmann et al. proposed a multi-sensor data collector (CSL-SHARE) for HAR. sensors used include triaxial 

accelerometers, triaxial gyroscopes, sEMG sensors, biaxial electrogoniometer, and airborne microphone. The 

accuracy of the CSL-SHARE dataset reached 96.1% (Liu et al., 2021; Hartmann et al., 2022). Smart knee 

bandage is a new method, sensors are fixed inside knee bandages and socks, and evaluates the movement 

posture of patients through IMU and pressure sensors, so as to obtain the movement and rehabilitation of 

patients (Haladjian et al., 2017; Haladjian et al., 2018). It is worth noting that Hartmann et al. defined six High-

Level Features of the subjects, obtained the information base by deploying different sensor carriers, and 

learned the relationship between the characteristic values of each activity and the sensor data through 

classification algorithms, so as to carry out pattern recognition. This method is a relatively advanced research 

content, and the recognition accuracy rate based on the CSL-SHARE and UniMiB SHAR datasets reaches 

89.7% and 67.3%, respectively (Hartmann et al., 2023). In conclusion, the study of locomotion mode based 

on multi-sensor fusion has received more attention and development (Varol et al., 2010; Huang et al., 2011; 

Luo et al., 2023). Linear Discriminant analysis（LDA）, also known as Fisher Linera Discriminant (FLD), is a 

classic algorithm for pattern recognition. It was introduced into the field of pattern recognition and artificial 

intelligence by Belhumeur in 1996. It is an effective feature extraction method. By this, the interclass dispersion 

matrix of projected pattern samples can be maximized, while the intra-class dispersion matrix is minimized 

(Tharwat et al., 2017). This method has been successfully applied to HAR. Hartmann et al. also compared the 

differences between the methods. The research showed that the poor recognition performance when it was 

used in a single read, but its transformation helped to improve the overall recognition performance, which was 

conducive to identifying most activities (Hartmann et al., 2021), and the evaluation performance of LDA based 

on HMM could be improved by 4 percentage (Hartmann et al., 2020). Therefore, the LDA method is adopted 

in this paper. 

This study aims to accurately recognize human lower limb locomotion mode through the method of multi-

sensor fusion. First a human lower limb motion data measurement system was developed. The measurement 

system consists of two inertial measurement units (IMUs) and a plantar pressure measurement system (PPS, 

containing three force sensors for each foot). The kinematic and dynamic parameters of the human motion are 

measured by IMU and PPS, respectively.  
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Linear discriminant analysis (LDA) was used to identify 11 independent gaits and 5 transformed gaits. 

Gait recognition helps to provide the right control strategy for the intelligent prosthesis, thus activating the 

corresponding drive mode to assist the amputee's movement. On the basis of ensuring the recognition 

accuracy, the number of motion patterns increased in this study. Outcomes covers the daily use of subjects, 

providing a reference for HAD and intelligent wearable devices. 

 

MATERIALS AND METHODS 

Human lower limb motion data measurement system 

The key to accurately recognize locomotion mode is the reliability and stability of measurement system. 

The human lower limb motion data measurement system is presented, and its reliability and environmental 

adaptability is also verified. 

The daily movement of human lower limbs includes the kinematic information of legs and the dynamic 

information between the sole and the ground. Only by collecting this information comprehensively, can the 

motion state of lower limbs be accurately described. The spatial motion information of human lower limbs is 

complicated, and it is difficult to cover the daily activity posture with a single sensor. Therefore, the composition 

of motion data measurement system designed in this paper needs two sensors, inertial measurement unit 

(IMU) and plantar-pressure measurement unit, which can make up for each other's shortcomings and facilitate 

us to analyze human lower limb gait more comprehensively. Secondly, due to the complexity of human 

movement, the data collected by the same type of single sensor can’t completely reflect the information 

contained in the movement to a certain extent. To sum up, the composition of the human lower limb motion data 

measurement system is shown in Fig. 1. The system consists of two inertial measurement units (IMUs), six thin-film 

force sensors, an Analog to digital conversion module (A/D Mod) and a computer. The information detected by 

IMUs and plantar pressure sensors enables comprehensive analysis and recognition of lower limb gaits. 

The IMU is an MTi-30 AHRS (Attitude and Heading Reference System) produced by Xsens of the 

Netherlands (fig. 1b). Motion capture of human lower limbs can be realized by IMU sensor. However, it is 

difficult for a single IMU sensor to accurately judge the movement with the gait cycle. Two IMU sensors are 

selected and fixed on the thigh and shank, which can reflect the complete information of the movement. The 

MT Manager software is used to display in real-time the three-dimensional motion information of the human 

lower limbs collected by the IMU, and it can also store the experimental data. 

In this paper, the force sensor, FlexiForce A401, is a thin film sensor (fig. 1d), which is produced by Tek 

scan of America. This sensor integrates the measurement signal and processing circuit and obtains drift-free 

signal data through its built-in low-power processor. 

 
Fig. 1 - Human lower limb motion data measurement system 

 

A single sensor cannot completely measure the pressure change of the entire plantar during the 

movement, and if the pressure sensing area is small or the location is inappropriate, it will inevitably cause the 

loss of the plantar pressure information. In this paper, the pressure test system (fig. 2a) is used to test the 

plantar pressure. In the experiment, three healthy volunteers walked through the plantar pressure test bench 

with bare feet. After collecting the data of the changes of plantar pressure, the plantar region was partitioned 

and the stress situation of each region was analyzed. The placement position of the plantar region sensor was 

determined by observing several zones with the largest strain (fig. 2b). 
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Fig. 2 - Position of the plantar region sensor 

(a) Pressure test system; (b) Volunteer plantar pressure 

 

Three sensors are attached to each insole to form a plantar pressure measurement system (PPS)， the 

distribution of the sensors is shown in Figure 1c, the calcaneus tuberosity (sensor 1), the first metatarsal bone 

(sensor 2) and the hallux toe (sensor 3). 

A/D Mod is installed on the waist of the wearer to process and convert the signals output by the sensor. 

To reduce the delay of data transmission, the transmission cable is used, and the computer is connected by 

USB to realize the transmission and storage of sensor data, and the analysis and visualization of IMU and 

force sensor data are realized. 

Plantar pressure system calibration 

IMU realizes data conversion through its built-in low-power processor. But the force sensor (FlexiForce 

A401) is a tiny thin force-sensitive resistor which varies with the vertical pressure. To ensure the accuracy of 

the value, it is necessary to carry out calibration. 

Weight of 1-10 kg is used in the calibration. The weight is increased in increments of 1 kg and the 

corresponding force is 9.8 N. In the test, to ensure full contact between the weight and the force sensor, the 

weight is placed vertically, while the applied pressure value and the output value are recorded. The linear fitting 

was carried out by Matlab and the resulting calibration equation is shown in Equation 1: 

𝑉𝑜𝑢𝑡 = 0.0028 × 𝐹 + 1.1128 (1) 

where Vout is the output value of the force sensor, F is the applied pressure. The residual norm of linear fitting 

is 0.0101, and the residual norm is < 0.05. The results show that there is a good linear relationship between 

the output value and the applied pressure value (fig. 3). In order to identify various gaits more intuitively, the 

calibration equation was used to convert the voltage output of the sensors into the pressure value, and then 

the test results were analyzed. 

 
Fig. 3 - The fitting details 

 

Adaptability to different ground surfaces 

The contact force that is obtained by the plantar pressure measurement system may be affected by the 

type of surface. To ensure the output stability of different surfaces, the adaptability of 6 mm rubber floor, 3 mm 

carpet floor and 9 mm wood floor is carried out. The experiment process is described in Fig. 4. 

 

Fig. 4 - The experiment process 

(a) Rubber floor; (b) Carpet floor; (c) Wood floor 

 

The experiment is carried out by an able-bodied subject，25 years old, male, with weight of 75 kg and 

height of 1.72 m. The subject is asked to walk at a normal, comfortable pace across three different surfaces 

under laboratory conditions. The subject walks for 3 complete gait cycles each time, and the pressure between 

the foot and the ground is collected during the walking. The pressure data are shown in Fig. 5. 
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Fig. 5 shows the data collected by three force sensors of a plantar pressure measurement system, and 

data of different ground types are represented by curves of different colors. The maximum signal difference of 

each force sensor in three different ground types is 6.6%, 4.5% and 7.9%, respectively. And the maximum 

signal difference is always around the peak of the signal. These results indicate that the signals of three force 

sensors in different areas of the same foot have similarities on different ground. In other words, the plantar 

pressure measurement system adapts to different surfaces. 

 

 
Fig. 5 - The pressure data on three surface types 

 

The process of experiment 

In our study, 10 able-bodied subjects are recruited. Their average age is 24.7 ± 1.4 years, average 

weight is 69.4 ± 10.7 kg, average height is 1.773 ± 0.054 m, and average foot size is 26.1 ± 0.5 cm. The 

positions of the sensors are shown in Fig. 1 10 able-bodied subjects are given adaptive exercises after wearing 

the device. 

In this paper, 11 independent gait patterns and 5 transformed gait patterns are designed to study the 

locomotion mode. The number of experiment groups in each gait pattern is 15. The type of gait pattern and 

gait cycles are shown in Table 1. 

Table 1 

 The number of trials for each pattern and gait cycles for each trial 

Type Gait patterns Trial number Gait cycles 

Independent 
gait patterns 

Sitting (SI) 15 − 

Standing (ST) 15 − 
Level-Walking (LW) 15 5 
Level-Fast Walking (LFW) 15 5 
Soil Walking (SW) 15 5 
Stair Ascending (SA) 15 2 
Stair Descending (SD) 15 2 
Ramp Ascending (RA) 15 2 
Ramp Descending (RD) 15 2 
Soil Ramp Ascending (SRA) 15 2 
Soil Ramp Descending (SRD) 15 2 

Transformed 
gait patterns 

Level-Walking - Ramp Ascending (LW - RA) 15 4 
Level-Walking - Stair Ascending (LW - SA) 15 4 
Level-Walking - Stair Descending (LW - SD) 15 4 
Soil Walking - Soil Ramp Ascending (SW - SRA) 15 4 

Standing - Sitting (ST-SI) 15 − 

 

The requirements of the test of independent gait are as follows. For the pattern of SI, the subjects are 

asked to sit on a 42 cm high chair in a normal, comfortable position (Fig. 6a). For the ST test, the subjects are 

asked to stand still on the ground, and the subjects are relatively relaxed, and maintain a steady body (Fig. 

6b). The LW and LFW require subjects to walk 5 steps on a straight hard surface, the speed is scheduled 

walking speed and slightly higher than daily walking speed respectively (Fig. 6c). The walking conditions of 

SW are the same as LW.  
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The difference is that the road surface of SW is soft soil, and the soil needs to be turned over before 

and after walking (Fig. 6d). The test environment of SA and SD is four steps, the width of the step is 0.4 m, 

and the height is 0.15 m. The subjects need to walk at a comfortable pace and posture (Fig. 6e). RA and RD 

are tested on the hard floor on the ramp, and the slope on the hard floor slope is 5 m in length, 1 m in width 

and 18.5° in inclination angle. To maintain normal walking speed and posture (Fig. 6f). The difference between 

SRA and SRD and RA and RD is that the road surface of SRA and SRD is soft soil, the soil needs to be turned 

over before and after walking to ensure the soft soil (Fig. 6g). 

 
Fig. 6 - Test of independent and transformed gait pattern 

(a) SI; (b) ST; (c) LW and LFW; (d) SW; (e) SA and SD; (f) RA and RD; (g) SRA and SRD; (h) LW-RA; (i) SW-SRA 

 

The requirements of the test of transformed gait are as follows. The walking conditions of LW-RA mode 

(Fig. 6h), LW-SA mode, LW-SD mode and SW-SRA mode (Fig. 6i) are consistent. The subjects are advised 

to walk 2 steps on each road. The difference between them is that the two types of pavements are different 

from each other. See independent gait for a detailed description. In ST-SI, the subjects stand up at first and 

then sit on a chair in a way that is normal for them. 

During the experiment, 10 subjects perform only one gait pattern each time, and each gait pattern is 

done in 15 groups. After each group of experiments, subjects are given a certain rest time. This method 

eliminates the impact of muscle fatigue on the data. 

 

Data filtering processing 

The Matlab software is employed, and statistical analysis methods are utilized for data processing. 

Moreover, algorithms such as time-domain analysis and principal component analysis are applied for 

eigenvalue extraction and other processing. 

One of the keys of preprocessing is to remove the noise in the acquisition and transmission stages from 

the data. The data information necessary for the test can be obtained by data filtering. The data information 

comes from IMU and force sensor. In this paper, the IMU has a built-in classical Kalman filtering algorithm to 

filter the signals in real time. Kalman filter is a common algorithm for sensor data processing in the navigation 

field. Based on the linear system state equation, the Kalman filter optimally estimates the current state of the 

system by updating the collected data and the previous state estimation data. Compared with other filtering 

algorithms, it can process data in the time domain. The filter algorithm can be directly used to process sensor 

data in the actual power assisted control, and the algorithm uses less storage space and is easy to implement 

in the system.  

Take the ADC (Analog-to-Digital Converter) curve of the original pressure at the position of the first 

metatarsal bone (Fig. 1c-sensor2) from RD gait pattern as an example (Fig. 7). The subjects start walking 

downhill from a stationary state, the initial pressure value was about 28 N, and began to decline with the right 

foot gradually raised. With the heel landing again, the pressure tended to peak again, and then the value 

changed periodically. 

There is noise impact in the data of Fig. 7 The noise source mainly has 3 aspects: One is the body 

shake, then because of the signal conversion process, the last one is the friction between the sole and the 

insole. To eliminate the periodic interference in the data and effectively suppress the high-frequency jitter, the 

ADC value of plantar pressure was filtered by Savitzky-Golay sliding filter in this paper. 
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Fig. 7 - The value of the first metatarsal bone in RD gait patterns (before the filtering) 

 

The core idea of Savitzky-Golay sliding filter is to fit the data in the window by the least squares method 

based on polynomials in the domain. Assume that the gait action data in a window of length p is x (i), i = -m, 

…, 0, …, m, same as 2m+1=p. In this window, K-order polynomials (Equation 2) are used to fit the original 

data. 

𝑓(𝑖) = 𝑎0 + 𝑎1𝑖 + 𝑎2𝑖2 + ⋯ … + 𝑎𝑘𝑖𝑘 = ∑ 𝑎𝑛𝑖𝑛

𝑘

𝑛=0

 (2) 

The residual of the least squares fitting ε is calculated through Equation 3. 

𝜀 = ∑ (𝑓(𝑖) − 𝑥(𝑖))2 =

𝑚

𝑖=−𝑚

∑ (∑ 𝑎𝑛𝑖𝑛 − 𝑥(𝑖)

𝑘

𝑛=0

)2

𝑚

𝑖=−𝑚

 (3) 

To minimize the residual, the partial derivative of each polynomial coefficient needs to be 0, the 

derivative of it can be obtained through Equation 4. 

𝜕𝜀

𝜕𝑎𝑟

= ∑ 2(𝑓(𝑖) − 𝑥(𝑖)), 𝑖𝑟

𝑚

𝑖=−𝑚

= 0 (4) 

where r =0, 1, ..., k-1, k. 

The result after processing is shown in Equation 5. 

∑ (∑ 𝑎𝑛𝑖𝑛+𝑟

𝑘

𝑛=0

)

𝑚

𝑖=−𝑚

= ∑ 𝑥(𝑖)𝑖𝑟

𝑚

𝑖=−𝑚

= ∑ 𝑎𝑛( ∑ 𝑖𝑛+𝑟

𝑚

𝑖=−𝑚

)

𝑘

𝑛=0

 (5) 

where r =0, 1, ..., k-1, k, The linear system of equations on the fitting coefficients can be obtained by derivation, 

which can be expressed by the following matrix (Equation 6). 

𝐴𝑇𝐴𝑎 = 𝐴𝑇𝑋 (6) 

where, 𝑎 = [𝑎0,  𝑎1, ⋯ ,  𝑎𝑛]𝑇, 𝑋 = [𝑥(−𝑚), ⋯ , 𝑥(0), ⋯ , 𝑥(𝑚)]𝑇,  

 

The matrix A is defined as shown in Equation 7: 

𝐴 = [

(−𝑚)𝑘 (−𝑚)𝑘−1 ⋯ (−𝑚)0

⋯ ⋯
⋯ ⋯

𝑚𝑘 𝑚𝑘−1 ⋯ 𝑚0

] (7) 

 

Finally, he result can be obtained as shown in Equation 8: 

𝑎 = (𝐴𝑇𝐴)−1𝐴𝑇𝑋 (8) 

 

According to the coefficients, the results of k-order polynomial fitting to the original data can be obtained, 

and the filtering results can be obtained after discretization. After several tests, the best filtering effect with p 

=6 and k =1 is obtained. The ADC value of the first metatarsal bone in RD gait pattern after Savitzky-Golay 

filtering is shown in Fig. 8. 

The gait segmentation 

Gait Phase (GP) refers to the different states that a foot presents during a gait cycle. A gait cycle can 

be divided into several gait phases (Wang and Hou, 2007). Gait phase is usually composed of two parts: 

Stance Phase and Swing Phase (Fig. 9). The phases of the gait cycle are relatively fixed during normal motion. 

It is believed that the stance phase takes up 60 – 65% of the time in a gait cycle (Anwary et al., 2018). 
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Fig. 8 - The value of the first metatarsal bone in RD gait patterns (after the filtering) 

 

 
Fig. 9 - Gait cycle 

 

If a gait cycle is effectively segmented, the effective and invalid data can be greatly reduced, and the 

real-time performance and accuracy of recognition can be obtained. In this paper, the plantar pressure and 

threshold are used to segment gait phase effectively. The threshold is finally determined as 1/3 of the pressure 

sum when the user stands still. 

Based on previous research on gait, in this paper, two gait events are defined to divide the gait phase. 

The two gait events are Foot Contact (FC) and Foot Off (FO). FC is the gait event when the pressure rises 

below a defined threshold reaches the threshold; FO is a gait event when the pressure above the defined 

threshold drops to a threshold. 

Take Fig. 10 as an example to explain a gait cycle. The black curve represents the sum of the three 

plantar pressure signals, dark blue represents Sensor 1, red represents Sensor 2, and light blue represents 

Sensor 3. When humans walk on flat ground, they start with the heel off the ground and move forward until the 

tip of the foot is off the ground. Through the proposed gait segmentation method, a complete gait cycle is 

divided into four stages by FC and FO: two-station 1 (DS1) and single-station 1 (SS1), two-station 2 (DS2) and 

single-station 2 (SS2). DS1 is the process of the left foot touching the ground to the right foot leaving the 

ground, DS2 is the opposite of DS1. SS1 is defined as when the sole of the left foot leaves the ground to when 

the sole of the left foot touches the ground. Again, SS2 is the opposite of SS1. 

 
Fig. 10 - Gait segmentation in a gait cycle 

 

Eigenvalue extraction and classifier 

Signal eigenvalues are important parameters in locomotion mode recognition and are typically analyzed 

using window-based analysis and incremental steps. The detailed process is illustrated in Figure 11. During 

locomotion mode recognition, the eigenvalue of the signal is calculated within each analysis window of duration 

R. The window then shifts backward by a time interval t, and the eigenvalue for the next analysis window is 

computed.  
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Fig. 11 - The process of eigenvalue extraction 

 

In theory, the duration of the analysis window affects the length of recognition time and whether the 

current gait pattern is accurately reflected. The increment of the window will also affect the computation amount 

and recognition delay. The eigenvalue extraction of the signal is related to the sensor signals. 

In this paper, a 150 ms sliding window is used to extract the eigenvalue of a total of 14 channels of 

sensing data (including two IMU sensing signals, each IMU has 4 channels) and pressure data (6 channels). 

The sensor type in this paper is a mechanical sensor, the time-domain analysis method is used to extract 

signal eigenvalues. This method does not need signal transformation, and the calculation is easy and time-

consuming. It mainly includes: maximum value, minimum value, mean value, standard deviation, and 

waveform length (the sum of absolute values of signal changes every 10 ms), where: 

Waveform length (WL) is calculated by Equation 9. 

𝑙0 = ∑|Δ𝑥𝑘|

𝑁

𝑘=1

 (9) 

Standard deviation (STD) is calculated by Equation 10. 

𝑆𝑇𝐷 = 𝜎 = √
1

𝑁 − 1
∑(𝑥𝑖 − 𝑥)2

𝑁

𝑘=1

 (10) 

In summary, this paper constructs a sliding window of 15×14 matrix through Matlab and extracts the 

maximum value, minimum value, mean value, standard deviation and waveform length of each signal channel 

under this sliding window. LDA is a linear discriminant analyzer, which requires relatively low computational 

complexity and can better reflect the differences between samples by using prior knowledge of categories. 

Therefore, LDA is selected as the classification method. 

The performance of LDA is the important target, its model is constructed and explained. In general 

pattern recognition, the goal of classification is to pursue the minimum error rate. By using the Bayes rule, the 

classification decision can be made to minimize errors. When the probability density in Bayes rule is a normal 

distribution condition, the expression of statistical decision-making is given in Equation 11. 

𝑃(𝑥|𝑐𝑖) =
1

(2𝜋)𝑑/2|𝛴𝑖|
1

2⁄
× 𝑒 {−

1

2
(𝑥 − 𝜇𝑖)𝛴𝑖

−1(𝑥 − 𝜇𝑖)
𝑇} (11) 

where x = [x1, x2, …, xd], xi is the eigenvalue of the input, x is the corresponding feature vector, that is, the new 

sample formed after extracting the feature value from the original data. In this paper, the dimension of the 

feature vector is 1×30, that is, d=30. μ = [μ1, μ2, …, μd], μ is the mean of the sample of eigenvalues, Σi is the 

covariance matrix of each class (symmetric nonnegative definite matrix). 

For binary problems, it is only necessary to compare the numerator parts of the above formulas. If the 

two types of samples are separated, a decision surface exists, and the equation of the decision surface can 

be expressed as shown in Equation 12. 

𝑔(𝑥) = 𝑙𝑛 𝑃 (𝐶𝑖|𝑥) − 𝑙𝑛 𝑃 (𝐶𝑗|𝑥) 

𝑔(𝑥) = −
1

2
[(𝑥 − 𝜇𝑖)𝛴𝑖

−1(𝑥 − 𝜇𝑖)
𝑇 − (𝑥 − 𝜇𝑗)𝛴𝑗

−1(𝑥 − 𝜇𝑗)
𝑇

] −
1

2
𝑙𝑛

|𝛴𝑖|

|𝛴𝑗|
+ 𝑙𝑛

𝑃(𝐶𝑖)

𝑃(𝐶𝑗)
 

(12) 

Assuming that the covariance matrices of each class are equal, i.e., Σi=Σj=Σ, the decision surface 

equation g(x) can finally be expressed as shown in Equation 13. 

𝑔(𝑥) = 𝜔𝑥𝑇 + 𝜔0 

𝜔 = （𝜇𝑖 + 𝜇𝑗)𝛴−1 

𝜔0 = −
1

2
（𝜇𝑖 + 𝜇𝑗)𝛴−1(𝜇𝑖 − 𝜇𝑗)𝑇 + 𝑙𝑛

𝑃(𝐶𝑖)

𝑃(𝐶𝑗)
 

(13) 
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where ω and ω0 are the model parameters. After obtaining the training model, they are directly used in the 

subsequent online identification test, and the model parameters do not change in the test. 

Evaluation method 

In our study, K-fold Cross Validation (K-CV) method is used to evaluate the recognition accuracy. In the 

K-CV method, 10-fold Cross Validation is used. The data of each gait pattern at each gait phase are divided 

into 10 parts, among which 9 parts are used for classifier training and the remaining one part is used for test 

data. This process is repeated 10 times to make the 10 parts used as one test data respectively. 

Recognition Accuracy (RA) is defined by Equation 14. 

𝑅𝐴 =
𝑁𝑐𝑜𝑟

𝑁𝑡𝑜𝑡𝑎𝑙
× 100% (14) 

where Ncor represents the number of correctly identified data groups, and Ntotal indicates the total number of 

test data groups. 

To describe the recognition effect in more detail, a confusion matrix was used, as shown in Eq.15. 

𝐶 = [

𝑟11 𝑟12 ⋯ 𝑟1𝑛

𝑟21 𝑟22 ⋯ 𝑟2𝑛

⋯ ⋯ ⋯ ⋯
𝑟𝑛1 𝑟𝑛2 ⋯ 𝑟𝑛𝑛

] (15) 

where each element is described as shown in Equation 16. 

𝑟𝑖𝑗 =
𝑛𝑖𝑗

𝑛𝑖

× 100% (16) 

where nij is the number of gait patterns i recognized as j in the test. ni denotes the number of gait patterns i in 

the test. rij represents the probability that gait pattern i is recognized as j. When i=j, rij represents the 

recognition accuracy of gait pattern i. 

 

RESULTS AND DISCUSSIONS 

Independent gait pattern recognition performance 

The average recognition accuracy of the independent gait pattern is 90.91%, and the recognition 

accuracy of DS1, DS2, SS1 and SS2 are 90.53%, 91.18%, 90.59% and 91.36%, respectively. The independent 

gait pattern has 11 gaits pattern in total and contains gaits pattern with similar motion characteristics. Overall, 

the experimental results are satisfactory. It should be noted here that the SI and ST do not have gait phase, 

but they are lumped together for the brevity of the confusion matrix. The detailed results are shown in Fig. 12. 

 

 
Fig. 12 - The detailed results of the independent gait pattern 

(a) DS1 phase; (b) DS2 phase; (c) SS1 phase; (d) SS2 phase 
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In the above results, the lowest recognition accuracy of the independent gait pattern is 80.19%, which 

is LFW in SS2 phase. Three flat walking modes are tested: LW, LFW, and SW. By comparing the curves of 

the plantar pressure system of the three gait patterns (Fig. 13), it can be seen that they have similar motion 

characteristics, which leads to the identification error. Although the recognition accuracy of LFW in SS2 phase 

is about 10% different from the average recognition accuracy, the accuracy of 80.19% is acceptable. 

 
 

Fig. 13 - The curves of the plantar pressure system of the LW, LFW and SW 

(a) LW; (b) LFW; (c) SW 

 

Transformed gait patterns recognition performance 

The results of the transformed gait pattern are similar to the independent gait pattern (Fig. 14). Its 

average recognition accuracy is 92.67%, and the recognition accuracy of DS1, DS2, SS1 and SS2 are 91.93%

，92.79%，93.31% and 92.65%, respectively.  

The lowest recognition accuracy is 85.47%, which is LW-SD in DS1 phase. In DS1, the two highest false 

recognition rates are LW-SA and SW-SRA, which are 7.20% and 4.02%, respectively. The three gaits pattern 

have similar motion characteristics. The higher false recognition rate is also due to these similar motion 

characteristics. 

 
Fig. 14 - The detailed results of transformed gait pattern 

(a) DS1 phase; (b) DS2 phase; (c) SS1 phase; (d) SS2 phase 

 

Discussion 

Independent gait has been studied relatively early, and the common human locomotion modes are: level 

walking, ramp ascent, ramp descent, stair ascent and stair descent. At present, the recognition rate of 

independent gait can reach above 95%. Compared with independent gait, the research time of transformed 

gait is relatively late, and the recognition is more difficult. At present, most types of gait recognition are less, 

about 5 – 8, and the road is mostly standardized (Table 2) (Gao et al., 2020; Liu et al., 2020; Young et al., 

2013). Because the increase in the number of patterns will affect the recognition accuracy. 
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Table 2 

Comparison of gait 

Reference 
Independent gait Transformed gait 

Number Accuracy Number Accuracy 

Gao et al. (2020) 5 98.46% — 
Liu et al. (2020) 5 95.8% — 

Young et al. (2013) 5 84.5% 8 93.9% 
Our Method 11 90.91% 5 92.67% 

 

In this paper, the number of locomotion modes has been increased. 11 independent gaits and 5 

transformed gaits are studied. In addition, the road conditions are much closer to reality. The walking condition 

in the soil is added, which is more significant in application. The overall accuracy of pattern recognition for both 

independent and transformed gait is above 90%. This is a relatively satisfactory result. 

At present, the main locomotion modes with similar motion curves have affected the accuracy. This may 

be related to the number of sensor and data processing. The increase in the number of sensor helps with 

pattern recognition, but it puts an extra burden on amputees' bodies and affects their movement. On the 

premise of ensuring the recognition accuracy, the use of sensors should be reduced. The recognition rate of 

the measurement system proposed in this work is above 90%, which achieves the expected goal. 

 

CONCLUSIONS 

In this paper, a human lower limb motion data measurement system, which has good environmental 

adaptability, was presented. Based on data filtering and gait segmentation, LDA classifier is used to analyze 

the data, and K-CV method is used to judge the accuracy of the results. 

The average recognition accuracy of the independent gait pattern is 90.91%, and the highest accuracy 

of SS2 pattern is 91.36% among the four gait phases. The average recognition accuracy of the transformed 

gait pattern is 92.67%, and the highest accuracy among the four gait phases is 93.31% of SS1. 

This method can accurately predict the locomotion mode of human lower limbs. Intelligent prostheses 

help lower limb amputees move by controlling joints, they can perform various activities more easily. Since the 

dynamics and kinematics required by the prosthesis are different in different locomotion modes, it is of great 

significance to accurately identify the user's locomotion mode for the operation of the prosthesis. Therefore, 

the method in this paper can provide a reference for the gait recognition, prediction and control strategy of 

intelligent prostheses. 
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